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1. Introduction

Consider a directed graph with set of nodes N and set of arcs A. Each
arc (i,j) has associated with it a cost function gij: R +(-o=,+@]. We denote
by fij the flow of the arc (i,j) and consider the problem of minimizing
total cost subject to a conservation of flow constraint at each node

minimize g.:(£..) 1)
.(i?i)eA 13743 .

subject to - £ .- | £, = 0, VieN.
@ier ™ (1,5en M

Ne make the following standing assumptions on zij:

a) 8ij is strictly convex, lower semicontinuous, and subdifferentiable

at each point within its effective domain, i.e. has at least one sub-

gradient at every fij with gij(fij)<=.

b) The conjugate convex function of 8350 defined by

g;j(tij) - ;gg {tijfij - ‘ijgfij)}' (2)
i)
is real valued, i.e. = < g;j(tij) < = for all real tij' (Because of the
strict convexity assumed in a) above, g;j is also continuously differentiable
and its gradient denoted Vg;j(tij) is the unique fij attaining the supremum
in (2)--see (7], pp. 218,253).
It is easily seen from (2) that Assumption b) implies that

lim gij(fij) = =, Therefore the objective function of the primal

problem (1) has bounded level sets ([ 7], Section 8). It follows that
there exists an optimal solution for problem (1) which must be unique
in view of the strict convexity assumed in a).

The problem above is of great practical interest and has been studied

for a long time. Except for strict convexity our assumptions are not overly

restrictive. For example

they are satisfied in the following two cases:
L3 ' Y LSO OCTINC AL AT ¢ DENDANT ¢ S ST
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1) The constrained case where 2ij is of the form |

"84 (£, L) -
1374 8506y otherwise

J

where zij and cij are given lower and upper bounds on the arc flow, and';ij
is a strictly convex, real valued function defined on the real line R.

2) The unconstrained case where zij is strictly convex, real valued and

its right and left derivatives ng and ‘;j satiséy

e g6 ==, ln o og(g) = - 4

ij fij-b-o

A dua] problem for (1) is given by

minimize q(p)

subject to no constraints on the vector p = {pilieN}. (5)
where q is the dual functional given by

q(@) = g (p;-Ps). (6)
(iina 7

We refer to p as a price vector and its conponents'pi as prices. The ith

price is really a Lagrange multiplier associated with the ith conservation

of flow constraint. The duality between problems (1) and (5) is well known
and is explored in great detail in the recent book by Rockafellar [1]. The
earlier book by Rockafellar [7] gives the necessary and sufficient condition
for optimality of a pair (f,p). A feasible flow vector f = {fijl(i.j)eA} is .
optimal for (1) and a price vector p = {pi[ieN is optimal for (5) if and

(PN N A A |



only if for all ares (i,j) ([T], pp. 337-338)
pi-pj is a subgradient of 8ij at fij'
An equivalent condition is

£i5 = 8ij(Pi-Py)s ¥V (L,)€A. @)

Any one of these equivalent relations is referred to.as the complementary

slackness condition, and is shown in Figure 1.
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gij (fij)
[}

i P ~Pj

Figure 1: Complementary slackness condition diagram for cost function
8506 = 15,0+ F (f)°
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Since the dual problem is unconstrained and differentiable it is

natural to consider algorithmic solution by a descent iterative method.
The Gauss-Seidel relaxation method is particularly interesting in this respect
since it admits a simple implementation. Given a price vector p,a node i is

A~

selected and its price Py is changed (relaxed) to a value p; such that

(mZ’i)eA vgy; (Pp-Py) = (ii’j)eA v81;(P;-p;) - (8)
It is easily seen (compare with the definition (6) of the dual cost q) that
this equation is equivalent to %%- = 0, so the dual cost is minimized at ;i
with respect to the ith price, ali other prices being kept constant. The
algorithm proceeds by reli;inz the prices of all nodes in cyclic order and
repeating the process. The convergence of this algorithm does not follow
immediately from standard results on relaxation methods [2], [3], (4] since
these results require some assumption that is akin to strict convexity of
the dual objective function (for a counterexample see Powell [S]). Un-
fortunately the dual objective function (6) need not be strictly convex and
the only result we know of regarding convergence of a network algorithm based
on relaxation is due to Cottle and Pang [6]. It applies to transportation
problems with quadratic cost function, and involves certain restrictions in
the way relaxation is carried out.

Our main objective in this paper is to explore the convergence
properties of distributed versions of the relaxation method just described.
Here we assume that each price P is under the control of a separate
processor who changes Py to ;i on the basis of (8) and commmicates the
new value to the other proéessors. One can consider a parallel computation

procedure carried out in an orderly manner whereby all processors exchange

NG Uy AN AT 2 TR A LA DA £ (O]
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their current prices before carrying out their relaxation iteration.
Mathematically this would be equivalent to a Jacobi type of relaxation
procedure. We would like to consider, however, a much more general procedure
whereby the communication between processors is not regular, and the information
available at some processors regarding prices of other processors may be
arbitrarily out-of-date. In addition we allow some processors to iterate

more frequently than others. Models of such asynchronous algorithms have

been formulated some time ago and by now there is considerable understanding’
of their convergence properties (see [8]-[16]; [17] is a survey). It turns
out that the dual problem (5) has structure that allows us to show that

the asynchronous relaxation method has satisfactory convergence properties.
This is particularly true when the dual problem (5) has a unique optimal
solution. Otherwise satisfactory convergence depénds on the starting point.
These results are all new and are shown in Section 3. The next section
analyzes the structure of the dual solution set and provides some preliminary
analysis.

Our notational conventions are that ; subscript denotes a node or pro-
cessor index, and a superscript denotes a time or iteration index. All vector
inequalities should be interpreted in a coordinatewise sense. In order to
simplify notation we have implicitly assumed that there is at most one arc
associated with any ordered pair of nodes i and j, so that the arc notation

(i,j) has unambiguous meaning. However this assumption is not essential

to any of our results.
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2. Structure of the Optimal Dual Solution Set

Our standing assumptions a)-c) guarantee that the primal problem (1)
has a unique optimal solution. They also guarantee that the dual problem
(S) has at least one optimal solution. (Assumption a) guarantees that every
feasible solution of the primal problem is regularly feasible [1] and the
existence theorem of [1), p. 360 applies). On the other hand the optimal
solution of the dual problem (5) is never unique since adding the same con-
stant to all coordinates of a price vector p leaves the dual cost unaffected.
We can remove this degree of freedom by constraining the price of one node, -

o say node N, to be zero. Thus we consider the reduced dual optimal solution

set P* defined by

P* = {p*| q(p*) = minq(p), p§ = O} 9)
P

where q is the dual objective function
aP = I gf.(p;-p.). (10)
(i,9)ea 9717

For the most part of the paper, we will operate under the following
assumption:
Assumption 1: The reduced dual optimal solution set P* is compact.
Assumption 1 is not overly restrictive. For example let {f;j | (1,j)eAl

3 be the unique primal optimal solution, and consider the set of arcs
SOy A e ‘ ,
E$:2 A {(i,j)lfij lies in the interior of the set 1fij|gij(fij)<a}}.

(11)

J:

Then Assumption 1 is satisfied if the subgraph’(N,;) is connected. To see

¥ f.‘f

A

this note that for all arcs (i,j)eA we have a bounded set of subgradients
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of gij at f{j thereby implying a bounded set of price differences pi-pj
corresponding to dual optimal solutions [cf. (6)]. Note that in the wum-
constrained case mentioned in the previous section every arc belongs to R
so, if the original graph is connected, Assumption 1 is satisfied. The con-
strained case of the previous section can be converted to the unconstraine&
case by replacing constraints by nondifferentiable penalty functions (see
(18], Section 5.5). For example a constraint fij'z 0 can be eliminated by
adding to the cost 8;; @ penalty ¢ max{O,-fij} + [max{O,-fij}]z with ¢
positive and sufficiently large.

Consider now the set
P = {plpw = 0} -- (12)

and for i = 1,...,N-1, the point-to-set mapping Ri which assigns to a price
vector peP the set bf all prices P; that minimize the dual cost along the

ith price starting from p, i.e. (cf. (8))

R = (B EVz;icp,-Si) . §V¢;,-(Si-pj)}. (13)

It is well known that a real valued convex function having one compact level
set, has all its level sets compact ([7], p. 70). Therefore under Assumption
1 the sets Ri(p), pcP are all nonempty, compact intervals. It follows that

under Assumption 1 the (point-to-point) mappings

~

ii(P) = . max P (14)
Pieki(P)

R(p) = ~min P | ' (1s)

= Pieki(p) i

ISR TR NA IV VSIS PR G LSRR TS TR WSS RLR T, L OSSR S IATA WIS



;% are well defined on the set P. We call §; (5i) the ith maximal (minimal)

relaxation mapping. It gives the maximal (minimal) minimizing point of the

”~

o, A
» %
+'s’a

dual cost along the ith coordinate starting from its argument. The point-to-

}": set mapping R, is called the ith relaxation mapping.
- Some key facts are given in the following proposition.
QS Propesition 1: Let Assumption 1 hold. The mappings i& and R, are
‘EI continuous on P. They are also monotone on P in the sense that for any
N p, p'eP, i = 1,...,N we have
2
: R(p) < R if pc<p', (16)
- R;(P) < R;(p") if p<p'. an
N _ l
X Proof: To show continuity of Ri we argue by contradiction. Suppose |
13 there exists a convergent price vector sequence pk -+ p such that the cor-
_J - -
X responding sequence {Ri(pk)} does not converge to Ri(p). By passing to a
ZE subsequence if necessary suppose that for some § > 0 we have
:::
0 @ > [eYHes vk (18)
:;
e (the proof is very similar if § < 0 and the inequality is reversed). By
2 -
. the definition of R, we have
o ;w,;icpm-ki(pn . §Vz;jcki(p)-pj). (19)
:é:
- k=, k T Ky _nK
; l%V:,,'u(pm-Ri(p )) = ;Vz;jtki(p )-py), ¥ k. (20)
-,
£,
"
"l
-,
-

P !l.}'_%
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Since pk - p it follows using (18) that for sufficiently large k we have

PR @Y > p R, ¥ (@ideA

= _k, k - . .
Ri(P )'pj < Ri(p)-pj ’ ¥ (i,j)eA.

Therefore for sufficiently large k we have using the convexity of g;i, g;

j
. k= k . = . |
vgmicpm-ki(p )) 2 Vlmi(Pm'Ri(P)) , ¥ (ﬂl,l)eA. !
"y R 0P < TR @ep), .V (LieA. %

Using these relations together with (19), (20) we obtain for all sufficiently

large k
£ s ¥ (p -R.(p)) = vg* -R. (p)) v (m,i)eA (21)
mi 3mi pm i P gﬂi (pm i P v ’
f = Vgt (R;(P)-p.) = Vgr.(R.(p)-p;) ¥ (i,j) (22)
ij gij i P pj gij i p PJ- ’ »J)eA. 22

Consider the intervals Imi and Iij given by

I; = {tf vgri(t) = £ .} , ¥ (m,i)eA
Ii; = {t] vz;j(t) = fij} » ¥ (i,j)eA.

For k sufficiently large so that (21), (22) hold we have

ii(p) = m{pilpi € pm.lmi’ (m:i) €A, piEIij-pj’ (1oJ)€A}

k ~ A k ~ . k .
Ki(P) = m{pilpiEPM-Imi' (m,1)eA, piSIij'pj’ (i,j)eA}
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Since pk + p, it is evident from these relations that i&(pk) - ﬁ;(p) thereby

contradicting (18).

To show monotonicity of E; we again argue by contradiction. Suppose

there exist p and p' such that p5 3.pj, Y j=1,...,N-1 but

K (@ > E;(p'). It follows then that

p;'ii (p') > Pm'ii (P): v (m,i)eA
Rel-p) < Kad-p, Y (LDeA
Therefore
vgr (py-Ri(P')) 2 Vg3, (PR, (P)), Y (m,i)eA
Vgij(ii(p')‘Pi] < v‘;‘j(ii(p)-pj), ¥ (i,j)eA

Since by definition we have

RO ACOMIE AR

g vgh; (PR (P)) = §v:;j(iicp1-pj)

it follows that equality holds in (23), (24), i.e.

A -— -—
£4 * Y8pi(Pp-Ri(P') = Vgg (py-R;(P))

A

£ = WpR(pI-P) = g1 R, (P)-Py)

e S Y A A A AT A AT A7 4 4t A RN AN

23)

(24)

(25)

(26)
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o Consider the intervals

Iy = {tlvgs () = £}

[ ]
h

Iij = 1t Vg;j(t) ij”

& and let

-"::: § = ﬁi(p) - ii(p').

We have for all (m,i)eA

3 Py - Ry(pe I, p, - Ri(pe I,
[+ and since Py < pn'n we obtain

Pp-Ri® < pl-Rip) -5 ¢ pl-RP').

Therefore
Py - Ry(P") - 8el, V (m,i)eA

N and similarly

RARL

AR A

Ei(p') + 48 - Pj € Iij' ¥ (i,j)EA-

>

-

It follows that

Sy .::l \ *y

ii(p') + 8eRi(p")

‘4.‘
a
000800 0 s

hY

thereby contradicting the maximal nature of Ei [c£. (14)].

-

) The proof of continuity and monotonicity of 51 is analogous with the

1
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one just given for §1 and is omitted. Q.E.D.

The monotonicity and continuity of the mappings ii and R, imply

a thus far unreported and somewhat surprising property of the optimal

dual solution set.

Proposition 2: Let Assumption 1 hold. There exist a maximal and a minimal

optimal solution of the dual problem, i.e. th.ere exist peP* and peP* such

that
P <P <P V¥pePt (27)

Proof: Since P* is nonempty and compact it contains a noninferior element
P for which there is no vector peP* such that p # p and P; 2 '5* for all

i. From the definition of R; and the optimality of P we have Fi < 'li'i(S) for

all i. Furthermore for all i the vector ('51.....'51_1. Ri('p?'), Fiﬂ"“’FN)
belongs to P* so from noninferiority of p it follows that ii(i) < Fi'

Therefore we have Fi. =R, (p) for all i. Let now p be a price vector

obtained from p according to

where § >0 is sufficiently large so that

P 2P . ¥ peP*. ' (28)

A e A O S e TN PN e
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It is easily seen that we have Tii(;) < ;i’ for all i so, using the

monotonicity of ii ‘shown in Proposition 1, we obtain

P < R¥™@ < B

() , vk (29)

N-1 , p¥-1

where R: R is the mapping

R(p) = (R (@),....Ry ;(P)] (30)

and le is the composition of R with itself k times. From (29) we see that
the sequence ﬁk(ii) converges to. some ; and by continuity of R we must have
; = i'(;) as well as ; > p. Since ; = E(;) implies that ;eP* it follows
from the choice of P that ; a p. Also from (28), (29) and the fact

p < R(p) for all peP* we obtain ; = p > p for all peP* which shows that

P is a maximal element of P*. The proof for existence of a minimal

element p is entirely similar. Q.E.D.
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Convergence Analvsis of Asvnchronous Relaxation

The model of distributed asynchronous computation we adopt is described
in (11], [12]). With each node i = 1,...,N-1 we associate a processor that
computes from time to time some element of Ri(p) (here p is the latest
price vector available to processor i), and sets the price P; to this
element. This price is then communicated at some later time to all other
processors. Computation and commumnication at the various
processors need not be synchronized. The precise model is as follows:

At each time instant, node i can be in one of three possible states
compute, transmit, or idle. In the compute state node i computes a new
price P;- In the transait state node i communicates the price P; obtained
from its own latest computation to one or more no&es m(mfi). In the idle
state node i does nothing related to the solution of the problem.

_ We assume that computation and transmission for each node takes place
in time intervals [tl‘tZ] with t, < t,, but do not exclude the
possibility that a node may be simﬁltaneously transmitting to more than one
node nor do we assume that the transmission intervals to these nodes have
the same origin and/or termination. We also make no assumptions on the
length, timing and sequencing of computation and transmission intervals

other than the following:

Assumption 2: For every node i and time t > 0 there exists a time t' > ¢t
such that [t,t'] contains at least one computatidn interval for i and

at least one transmission interval from i to each node m such that (m,i)eA
or (i,m)eA.

Assumption 2 is very natural. It states in essence that no node
"drops out of the algorithm' permanently--perhaps due to a hardware failure.

Without this assumption there is hardly anything we can hope to prove.

IS TR R T RV TRV Y 0L W LR TR RERTRT AT UGS,



Each node i has a buffer B, for each mpi where it stores the
latest transmission from m, as well as a buffer Bii where it stores its
own price estimate P;- The contents for each buffer Bin at time t are
denoted pi(i). Thus p (i) is, for every ¢, i and m an estimate of the
price Py available at node i at time t. It is important to realize in

what follows that the buffer contents p:(i), and p:(i') at two different

nodes i and i' need not coincide at all times. If ifm and i'# m the

buffer contents p;(i), and p:(i') need not coincide at any time t. The

vector of all buffer contents of node i is denoted pt(i), i.e.,
pt(i) L {p:(i) ‘I = 1,0...“"1}0. ’

The rules according to which the buffer contents p:(i) are updated are
as follows:

(1) If [tl,tz] is a transmission interval from node m to node i, the
contents of the buffer B 3t time t, are transmitted and entered in the
buffer Bim at time t,, i.e.

t t
p 21 = p(m. . 1)

(2) 1f [tl,tz] is a computation interval for node i, the content of
. t
the buffer Bii is replaced at time t, with an element of Ri(p 1(i)). i.e.

t

t 1
P; (i) e R;(p (1)) (32)

(3) The contents of a buffer Bii can change only at the end of a

computation interval for node i. The contents of a buffer B, , ifm can

change only at the end of a transmission interval fromm to i.
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The algorithm based on (32) will be called Asynchronous Relaxation
Method ' (ARM) .

Our objective is to derive conditions under which limit points of
the sequences {pt(i)} are optimal solutions of the dual problem (5). The
following proposition is our main result. The proof is based on a gen-
eral convergence theorem given in [12] (see also [17]) and applicable to
asynchronous iterative algorithms such as the one just described. The key
property that makes asynchronous convergence possible is the monotoniciiy
of the mappings ﬁi and'gi shown in Proposition 1. This property is also
present in dynamic programming models and has been simi}arly exploited
to show the validity of asynchronous versions of the ;uccessive approximation

method [11].

Proposition 3: Let Assumptions 1 and 2 hold. For any initial buffer
contents p°(i)eP, i = 1,...,N-1, each limit point of the sequences

{pt(i)} generated by the ARM belongs to the set
P = {plpcpsp} (33)

where p and p are the maximal and minimal dual optimal solutions. In
particular, if the reduced dual optimal solution set P* consists of a

unique vector p* we have

lim p%(i) = p*  , 1= 1,....N-1. (34)
Lt

Proof: Let p, P € P be price vectors such that

poci) i i N » v i = 1.--.,N"1

IA

4

and such that
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(The existence of such vectors was established in the' proof of Proposition

2). Consider the sets
™. PIRM@ <P < Tz"(p)} , k=1,2,... (35)

Note that the sequence {?k} is nested and that the common intersection of
the sequence is the set P of (33).

We will apply now a convergence theorem given in Section 3 of [12]
(arProp. 3.1 of [17]).. According to this theorem the desired result
will be proved if the following three conditions are satisfied. (Rather
than consulting the references just cited, the reader may wish to think
through the proof of this since it is rather simple).

a) If pe?kthen for every i the vector p' with coordinates

P; ifj#i
‘R
R, (P) ifj=1i

(cf. the equation (32) associated with computation at node i), also belongs
T"k )

to

b) 1If pel"'k and pEFk then, for every i and m, the vector p' with coordinates

pj if jédm

Pp if j = m
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W .
W (cf. equation (31) associated with transmission from node m to node i),
g
\" also belongs to Fk

¢) If p(1),...,p(N-1) belong to Fk then the vector p' with coordinates
¥ :

> P} = RGN L PPN S

2

A Py ° 0

%

(cf. a computation (32) at each node followed by a transmission to every

‘;':I other node), belongs to Fk’l.

<

:3 It is easily seen that all the conditions stated above are satisfied
e

in our case so the desired conclusion follows. Q.E.D.

.\."

N
I.: Prop~sition 3 shows that the ARM has satisfactory convergence when
"J

~ P* has a unique element. One way to guarantee this is to consider the
o optimal solution £f* of the primal problem (1) and the set of arcs

L]

o~

! -
K A = {(i,j)eA | 8 is differentiable at fi'j}.

J
'2 Then, if the graph (N,A) is connected,P* consists of a unique poiat in
f: view of the complementary slackness condition (7). In order to improve
i
( the convergence properties when P* has more than one point it is necessary

to modify the ARM so that a computation at node i replaces P; with l-l'i (p) .
(not just any element of Ri(p)). We call this the maximal ARM. If in

place of 'lfi(p) we use gi(p) the reéulting method is called the minimal ARM.

Proposition 4: Let Assumptions 1 and 2 hold. Assume that the starting

buffer contents satisfy
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N p) > 9 ., ¥ is1,.,.,N-1 (36)
SN

52', Then if {pt(i)} is generated by the maximal ARM we have

3

» \:

N0y lim ptd) = p , i=1,...,N-1. (37)
W o0

B

P

ol Proof: The proof is identical to the one of Proposition 3 exgept that the
5N

Hi% set 5'k of (35) should be replaced by

\‘"}‘

% * -l 7P <op < Rp}. Q.E.D.

N

" There is a similar result for the minimal ARM whereby p is replaced
> :

:‘} by p and condition (36) is replaced by p°(i) < p for all i. The follow-
I

- ing example demonstrates that the results of Proposition 3 and 4 cannot

be improved.

o

?-:* Example: Consider the 3-node network shown in Figure 2.

-

P,

.f-:':’

=

' " Figure 2

g _

R The arc costs are

D ‘ ‘ . 2 2 2
812(F10) = (£15)7% 8p5 = Ifp5l *+ (65,907, 85, (F5) = [f] + (£5)
Y

Lh Y .
and the optimal primal solution is
o

. » " - L4
0 f2 = f35 = £ = O




gV(ﬂﬂf(ﬂﬂwmmrﬁ(mmmmmmrwm

-21-

The reduced dual optimal solution set is derived from condition (7) and is

given by

Pr = {pjpy = 0, p, = pp -1 < p £ 1, -1 £ p, £ 1}

The results of Proposition 3 and 4 are illustrated in Figure 3. To see that
the ARM as well as the maximal and minimal ARM may not converge to a dual
optimal solution, let-the buffer contents of processors 1 and 2 be both
equal to (-1,1) and let both processors update the respective price co-
ordinates and then exchange the results of the computation. Then the buffer
contents will be (1,-1), and by repeating this process one more time the
buffer contents will become again (-1,1) thereby completing a cycle. There-
fore in general we cannot expect convergence of the ARM to the ;ptinal
solution set if the latter contains more than one element. Similarly

the maximal and minimal ARM need not converge to p and P respectively

if the initial buffer contents do.not belong to the appropriate regions

[cf£. (36)].




%

Set of initial
buffer contents
for which the
minimal ARM
converges to p

74

P,
Set

Minimal
Solution [

272

Set of initial

| X butfer contents

C Xfor which the
maximal ARM

’ converges to p
‘0 XX XD

Maximal _
Solution p

l
9

»

P

\Roduced Dual
Optimal Solution
Set P*

to which the

)

-1

Figure 3: Structure of the optimal solution set, and convergence
regions of the ARM, the maximal ARM, and the minimal ARM.
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